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ABSTRACT

Recent developments in semi-global tractogram optimisation algorithms have opened the field of diffusion magnetic resonance 
imaging (MRI) to the possibility of performing quantitative assessment of structural fibre ‘connectivity’. The proper application of 
these methods in neuroscience research has, however, been limited by a lack of awareness, understanding, or appreciation for the 
consequences of these methods; furthermore, particular steps necessary to use these tools in an appropriate manner to fully exploit 
their quantitative properties have not yet been described. This article therefore serves three purposes: to increase awareness of 
the fact that there are existing tools that attempt to address the well-known non-quantitative nature of streamlines counts; to illus-
trate why these algorithms work the way they do to yield quantitative estimates of white matter ‘connectivity’ (in the form of total 
intra-axonal cross-sectional area: ‘fibre bundle capacity (FBC)’); and to explain how to properly utilise these results for quantitative 
tractography analysis across subjects.
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ABBREVIATIONS

AFD: apparent fibre density;
COMMIT: convex optimisation modelling for microstructure-informed tractography;
DWI: diffusion-weighted imaging (/image)
FBA: fixel-based analysis;
FBC: fibre bundle capacity (an estimate of the bandwidth of a white matter pathway);
FC: fibre cross-section (NB: macroscopic change in);
FD: fibre density (microscopic);
FDC: fibre density and cross-section (combined measure of FD and FC);
‘fixel’: specific fibre population within a voxel;
FOD: fibre orientation distribution;
LiFE: linear fascicle evaluation;
SIFT: spherical-deconvolution informed filtering of tractograms.

INTRODUCTION

Since the introduction of tractography to the field of dif-
fusion magnetic resonance imaging (MRI), there has been 
extensive interest in the use of this technology to assess 
fibre ‘connectivity’ in the brain for various neuroscientific 

applications (1–4). The vast majority of tractography al-
gorithms operate on the same fundamental mechanism: 
the ‘streamlines’ algorithm, where plausible white mat-
ter fibre pathways are constructed by iteratively propa-
gating along the local estimated fibre orientation (5–9). 
Unfortunately, this mechanism of reconstruction does not 



 : 2022, Volume 2 - 2 - CC By 4.0: © Smith et al.

O R I G I N A L   R E S E A R C H   A R T I C L E

directly facilitate one of the most fundamental parameters 
of interest: the density of ‘connectivity’ between two brain 
regions (10). A major contributing factor to this limitation 
is that while the streamlines algorithm enforces that the re-
constructed trajectories obey the estimated orientations 
of the underlying fibre bundles, it provides no meaningful 
control over the reconstructed densities of those bundles.

The class of ‘global tractography’ methods (11–15) has 
for many years shown promise to circumvent this prob-
lem. While in the ‘streamlines’ algorithm individual white 
matter trajectories are propagated independently and 
using only local fibre orientation information, these ‘glob-
al’ methods simultaneously solve for all connections at 
once, in a manner that enforces the entire tractogram re-
construction to be consistent with the raw diffusion image 
data. Even the most modern of these methods, however, 
incur considerable computational expense (particularly 
as reconstructions with greater numbers of connections 
are sought), and typically do not provide any guarantees 
regarding the construction of connections with biologi-
cally meaningful terminations, for instance, resulting in 
terminations in the white matter or cerebrospinal fluid 
(CSF) that are otherwise considered erroneous (16,17).

A new class of ‘semi-global’ tractogram optimisation 
algorithms offers a potential compromise (18–22); these 
have additionally been referred to as ‘tractogram filter-
ing’, ‘microstructure-informed tractography’, and ‘top-
down’ algorithms in various contexts. These approaches 
take as input a whole-brain tractogram generated using 
one or more streamlines tractography algorithms and 
modify the reconstruction in some way such that the local 
streamlines densities become consistent with the density 
of underlying fibres evidenced by the image data. These 
methods therefore enable quantitative assessment of 
fibre ‘connectivity’ (within the myriad other associated 
limitations of diffusion MRI and streamlines tractogra-
phy), with whole-brain reconstructions that are sufficiently 
dense to enable higher-level analyses (e.g. connectomics 
(23,24)) within reasonable computational requirements.

Despite the potential influence of these methods on 
the neuroimaging field, they have had only limited up-
take. This may be due to a lack of awareness of the public 
availability of such methods, or a lack of understanding 
that these methods address some of the origins of the 
limitations of raw streamline count as a metric of ‘con-
nectivity’. Furthermore, although these methods seek to 
modulate the relative connection densities of different 
white matter pathways within a single brain, the appro-
priate mechanism by which these quantities should be 
compared across subjects has not yet been comprehen-
sively explained in the literature. This article therefore 
serves three purposes, with the aim of increasing the util-
ity of these tools in the field:

• Alert a wider audience to the fact that a primary 
contributing factor to the non-quantitative nature 
of streamlines counts can be addressed using freely 
available methods;

• Carefully explain and demonstrate why the design of 
these methods is appropriate to provide estimates of 
white matter connection density, including in the con-
text of structural connectome construction;

• Explain how these estimates of connection density 
should be handled when performing direct compari-
sons between subjects.

BACKGROUND

Before addressing the major points of this article, we first 
clarify the specific position and role of these ‘semi-glob-
al’ tractography optimisation algorithms, the ‘connectiv-
ity’ metric of interest to be derived from them, and the 
limitations within which they operate.

Requisite knowledge

The specific ‘semi-global’ methods under discussion 
here are intrinsically dependent on both voxel-level 
modelling of diffusion MRI data and streamlines trac-
tography. As such, an adequate understanding of those 
concepts will be necessary for readers to follow the logic 
presented here; these topics are covered extensively by 
prior publications (2,5,9,10,25–33).

Context and role of semi-global algorithms

Figure 1 presents the role of these methods within a trac-
tography-based reconstruction pipeline.

• Some biological white matter bundle of interest (Figure 
1a; the connection between homologous motor areas 
in this example) is interrogated using diffusion-weight-
ed imaging (Figure 1b). Due to the sizes of the under-
lying axons within the white matter relative to the im-
aging resolution, there will typically be of the order of 
a million axons traversing any given image voxel.

The notion of a single scalar quantity of ‘connectivity’ 
of a white matter pathway is intrinsically ambiguous. If 
quantifying such a property of the underlying biological 
bundle, a reasonable interpretation would be the num-
ber of axons constituting the connection, as the informa-
tion-carrying capacity of the bundle could be reasonably 
expected to scale in direct proportion to such. However, 
precisely estimating this parameter is prohibited by the 
limitations of diffusion-weighted imaging (DWI). The logic 
behind the proposed total intra-axonal cross-sectional 
area metric mentioned here in Figure 1 is discussed fur-
ther in the ‘Metric of “connectivity”’ section.

• A diffusion model estimates from these data, within 
each image voxel, the orientations and densities of the 
fibre bundles within that voxel (Figure 1c–d).

• These orientation estimates are used by a streamlines 
tractography algorithm to attempt to reconstruct in 
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construction and subsequent interrogation of the brain 
‘structural connectome’ (23,24). Within this framework, a 
parcellation of the grey matter is defined, and for every 
possible unique pair of grey matter regions, a scalar 
measure of ‘connectivity’ is quantified, with these values 
together forming a connectivity matrix that encodes the 
value of this connectivity metric between pairs of regions 
in their corresponding rows/columns (29,30,40). Such 
connectome construction can therefore be thought of as 
simply repeating this quantification process many times, 
where each ‘bundle of interest’ is defined based on the 
streamline endpoints being ascribed to a specific pair of 
grey matter regions. So, in the context of connectomics, 
the techniques described here for characterising such 
‘connectivity’ are intended to:

• Supersede the use of streamline count, which contin-
ues to be used in neuroscientific applications despite 
being known to be biased by many reconstruction-re-
lated parameters (10,19,41);

• Provide a measure of ‘connectivity’ for which, when 
applying higher-order analyses that implicitly interpret 
such data as the bandwidth of information flow around 
a network (42,43), such an interpretation is more direct 
and intuitive than alternative measures such as aggre-
gate microstructural quantities.

Metric of ‘connectivity’

The notion of ‘connectivity’ in the context of diffusion 
MRI tractography remains ambiguous without a very ex-
plicit description of exactly what metric is derived from 

a piecewise fashion the fibres within the pathway of 
interest (Figure 1e). Unlike biological axons, recon-
structed streamlines have no associated volume and 
are therefore shown as infinitesimally thin in Figure 1e. 
The number of streamlines traversing any given image 
voxel may be of the order of 1,000, but varies wildly 
depending on reconstruction parameters.

• The role of such a ‘semi-global’ tractogram optimis-
ation algorithm is to combine the reconstructed trac-
togram with fibre density (FD) information from the 
diffusion model (or alternatively the diffusion-weight-
ed image data themselves; see the ‘Comparing tracto-
grams and image data’ section), relying on the quan-
titative nature of these FD estimates to overcome the 
non-quantitative nature of streamlines tractography.

• The outcome of such a process is a derived measure of 
‘connectivity’ of the pathway of interest (here named 
‘fibre bundle capacity (FBC)’; more in the ‘Metric of 
“connectivity”’ section). If calculated appropriately, 
this measure should be a reasonable proxy for the in-
formation-carrying capacity of the biological pathway.

Unlike other analysis techniques that interrogate the 
values of quantitative properties as they vary along the 
length of a white matter bundle of interest (34–39), here 
the derived experimental output is a single scalar mea-
sure reflecting the total ‘connectivity’ of that pathway be-
tween its two endpoints.

While this explanation (and subsequent demon-
strations in this article) focuses on performing such a 
quantification for only a single pathway of interest, all 
of the content of this article is directly relevant to the 

Fig. 1. Contextualisation of semi-global tractogram optimisation algorithms. Given the existence of a biological white matter pathway of interest (a), diffu-
sion-weighted imaging is performed (b). A diffusion model is fitted to these data to yield fibre orientation (c) and density (d) estimates. Fibre orientations are utilised 
by a tractography algorithm to produce streamlines (e). An optimisation algorithm operates on both the tractogram reconstruction and FD information to yield an 
estimate of bundle connectivity, here named ‘fibre bundle capacity (FBC)’, which should ideally be proportional to the connectivity of the biological bundle.



 : 2022, Volume 2 - 4 - CC By 4.0: © Smith et al.

O R I G I N A L   R E S E A R C H   A R T I C L E

the pathway being reconstructed. While for simplici-
ty this metric can be thought of as a proportional esti-
mate of axon count, the precise attributes of this metric 
are discussed later in the ‘Qualifying the “Fibre Bundle 
Capacity (FBC)” metric’ section.

The important distinction between FD estimates quan-
tified at the voxel level, and fibre connection density es-
timates (i.e. FBC) quantified at the level of pathways of 
interest, is demonstrated in Figure 3. There are various 
diffusion models that include some parameters related 
to fibre volume for each image voxel (Figure 3a–d). In 
the context of this article, however, we seek to quantify 
the total fibre cross-sectional area associated with some 
specific pathway of interest (Figure 3e–f).

Limitations of semi-global optimisation 
algorithms

• We do not consider the sub-voxel spatial configu-
rations of fibre bundles in either the image (45) or 
tractogram (46) domains; we consider only that each 
voxel is the sum of its constituent parts, irrespective of 
sub-voxel position;

the image data/tractogram reconstruction. In the diffu-
sion MRI tractography literature, myriad metrics have 
been utilised, all of which have been referred to at some 
point as simply ‘connectivity’.

In the context of the methods discussed here, our 
target scalar metric of interest when quantifying ‘white 
matter connectivity’ is the total fibre cross-sectional area 
of a fibre bundle (ideally, the intra-axonal cross-sectional 
area). The nature of this metric is presented visually in 
Figure 2, where a bundle of interest is defined based on 
those fibres connecting two endpoints of interest, and 
the intra-axonal cross-sectional areas of only those fibres 
attributed to the bundle of interest are summed to de-
rive this estimate. This metric has previously been shown 
to converge white matter connection density estimates 
towards gross axon count estimates from post mortem 
dissection (44). To facilitate discussion of higher-level 
concepts in the context of this metric, we henceforth 
refer to this metric as the ‘FBC’. This term communicates 
that the intent of this measure is the capacity of a white 
matter fibre bundle to transmit information between its 
endpoints. Ideally, derivation of this measure should be 
as sensitive and specific as possible to the intra-axonal 
cross-sectional area of the biological fibres constituting 

Fig. 2. Visual depiction of the fibre bundle capacity (FBC) metric. A white matter bundle of interest is defined based on its endpoints, shown as yellow cuboids. 
Only those fibres that are attributed to both endpoints are constituent members of that bundle (green cylinders). The FBC is defined as the sum of the intra-axonal 
cross-sectional areas of these fibres.
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which to compare the tractogram to those image data. 
There are two principal mechanisms by which this may 
be done (demonstrated in Figure 4):

1. Each streamline contributes some intensity to the 
reconstructed diffusion signal based on a forward 
model. Typically, a diffusion tensor with fixed diffusivi-
ties is chosen. Signal intensity from sources other than 
white matter fibres may additionally be modelled as 
isotropic or anisotropic sources contributing to the 
diffusion signal and included in the optimisation. The 
reconstructed image data from the tractogram (and 
possibly other tissue sources) is compared directly to 
the empirical diffusion data.

2. The white matter fibre density within each fixel is first 
estimated based on an inverse model, potentially 
with estimation and separation of other signal sources 
(e.g. other tissues or fluid) (50–58). Here, we focus on 
the spherical deconvolution model (31,59,60), though 
other approaches can certainly be used. The recon-
structed streamlines density from the tractogram as-
cribed to each fixel is compared directly to the corre-
sponding white matter fibre densities estimated from 
the diffusion model.

• We assume that the diffusion signal measured in a 
voxel is the sum of signal contributions from the mat-
ter fibre bundles and other tissues within that volume 
(i.e. the ‘slow exchange’ regime);

• We do not consider influencing streamlines trajectories 
based on microstructural information, as discussed (47) 
and proposed (48) recently; we consider only the use of 
microstructural/image information to modulate the re-
constructed densities of different white matter pathways.

Comparing tractograms and image data

Throughout this discussion, we use the term ‘fixel’ (49) 
to refer to a specific fibre population within a particu-
lar voxel. Each voxel in the diffusion image may contain 
multiple fixels (‘crossing fibres’), and the number of fixels 
may vary between different voxels. Use of such terminol-
ogy assists in disambiguating this concept from a mac-
roscopic white matter fascicle that connects two areas of 
grey matter, each of which will be associated with many 
fixels along its length and breadth.

Using diffusion image data to provide a tractogram 
with quantitative attributes requires a mechanism by 

Fig. 3. Relationship between quantification of intra-axonal volume within individual voxels (FD), and quantification of intra-axonal cross-sectional area of a white 
matter bundle of interest (fibre bundle capacity (FBC)). A bundle of interest is defined based on selection of two parcels (yellow surfaces) within a grey matter sur-
face segmentation (planes at far left and far right of the figure). (a) A diffusion model may provide, within each individual image voxel, an estimate of intra-axonal 
volume (FD). Any bundle of interest will likely traverse a large number of image voxels along its length and breadth. (b) The parameter of interest for quantifying 
the ‘connectivity’ of this white matter pathway is the total intra-axonal cross-sectional area of the axons attributed to the bundle of interest (FBC). Note that this is 
irrespective of the length of the pathway or the total dimensions of the plane necessary to encapsulate all axons within that pathway.



 : 2022, Volume 2 - 6 - CC By 4.0: © Smith et al.

O R I G I N A L   R E S E A R C H   A R T I C L E

intersection, which is then attributed to the appropriate 
fixel within that voxel. As such, each streamline has asso-
ciated with it a set of fixels traversed, and each fixel has 
associated with it both an FD as estimated by the diffu-
sion model and a total streamlines density based on the 
set of streamlines traversing it. The algorithms described 
below involve direct utilisation of this per-fixel informa-
tion (to a greater or lesser extent). While mechanism (1) is 
potentially sensitive to fibre/streamlines orientation dis-
tribution information that is more complex than what can 
be represented using a small finite number of discrete 
fixels in each voxel, mechanism (2) essentially utilises 
the fixels provided by the diffusion model as a sparsi-
fying transform, reducing the size of the computational 
problem; further, the fact that it is possible to perform 
for each fixel a direct scalar comparison between FD and 
total streamlines density makes this mechanism more 
amenable to promoting an understanding of the logic 
underlying the methods described in this article.

METHODS

The algorithmic basis of quantitative streamlines 
tractography

In order to demonstrate the fundamental operation of 
the algorithms under discussion (and hence the quanti-
tative properties they provide), we begin with a simple 

Although the former approach is more ‘conventional’, 
and additionally has a long history of use in the context 
of global tractography methods, for demonstration pur-
poses we use the latter model, as it provides a more intu-
itive course of reasoning in the following sections.

Note that these two approaches are directly related via 
the invertibility of the spherical convolution transform: 
the a priori definition of the forward models to be used 
for each tissue component/compartment in approach  
(1) serves the same purpose as the a priori definition of 
the tissue ‘response functions’ for spherical deconvolu-
tion in approach (2) (Figure 4). Note also that in Figure 
1, the ‘semi-global algorithm’ is shown to be utilising 
information from estimated fibre densities rather than 
the diffusion-weighted images, corresponding to case  
(2) described here.

There is an important difference between these two 
cases that is requisite for proper understanding of sub-
sequent sections of this article. In mechanism (1), the 
model considers not only the density of streamlines 
within any particular image voxel, but also the precise 
orientation distribution of those streamlines: the con-
tribution of each streamline towards the reconstructed 
diffusion-weighted signal is based on the tangent of 
the streamline at each location along its trajectory. In 
mechanism (2), the diffusion model defines a small finite 
number of discrete fixels in each image voxel; the algo-
rithm that maps each streamline to the DWI voxel grid 
(19) determines the orientation of each streamline-voxel 

Fig. 4. Relationship between two different modelling approaches used in ‘semi-global’ tractography optimisation algorithms. (a) Based on estimates of local densi-
ties of different types of tissue (including orientation information in the case of white matter streamlines), and functions describing how each tissue contributes to the 
diffusion signal at different b-values (often derived from e.g. the diffusion tensor model), a spherical convolution is performed to estimate the diffusion signal from 
the current tractogram reconstruction. This is compared to the empirical diffusion signal intensity data, and the tissue density estimates within the reconstruction 
are revised accordingly. (b) Based on tissue response functions describing the appearance of each type of tissue in the diffusion data (determined either from some 
model or from the image data directly), a spherical deconvolution is performed to obtain estimates of tissue densities (including orientation information in the case 
of white matter fibres). The densities of a reconstructed tractogram are compared to the white matter fibre density estimates, and the parameters of the tractogram 
are revised accordingly.
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that a pathway volume can be derived by computing a 
mask of fixels that are traversed by the streamlines be-
longing to that pathway, and this can be converted to a 
pathway cross-sectional area based on the length of the 
pathway (Figure 6; see also pseudocode in Appendix):

Step 1.  Identify all fixels that are traversed by at least 
one streamline belonging to the pathway.

Step 2.  Sum the fibre volumes of all selected fixels to 
calculate the total fibre volume of the pathway.

Step 3.  Divide this value by the mean streamline length 
to estimate FBC for the pathway.

Figure 7a shows the assignment of FD from the underly-
ing diffusion model field to the quantification of volume 
(and hence cross-sectional area) of this specific pathway. 
There are a couple of weaknesses in this algorithm ob-
served in Figures 6 and 7a:

• The effect of ‘outlier streamlines’: those streamlines 
that are attributed to the pathway of interest but fol-
low a trajectory drastically different from the rest of 
the streamlines assigned to the pathway. When this 
occurs, all of the fixels traversed by that streamline 
are added to the fixel mask, and all of the FD within 
each of those fixels contributes to the total fibre vol-
ume of the pathway. One or a small number of stray 
streamlines may therefore drastically increase the final 
quantification of FBC (e.g. the streamline in Figure 5 
that travels partway down the corticospinal tracts as it 
traverses between the two regions of interest).

Utilisation of some more stringent criteria for inclusion 
of fixels in the mask (e.g. an increased streamline count 
threshold) could theoretically mitigate this effect, 
though what form such criteria should take is subjec-
tive. Alternatively, such errors may be addressed using 
additional tractography regions-of-interest or manual 
quality control procedures; but such mitigation does 

definition of the fundamental data and research question 
that may be applicable to an example analysis involving 
diffusion MRI tractography.

• What we want:
	{ An estimate of the FBC metric for some pathway, as 
defined in the Background section and demonstrat-
ed in Figures 2 and 3.

• What we have:
	{ A measure of fibre volume for each fixel as estimat-
ed via a diffusion model;
	{ A set of streamlines delineating the trajectory of 
the pathway of interest, typically based on a prio-
ri regions of interest or other criteria to isolate the 
pathway;
	{ A whole-brain tractogram, of which the set of 
streamlines ascribed to the pathway of interest is a 
subset (while this is not required for Algorithm 1, its 
necessity will be demonstrated in later algorithms).

The example to be used for demonstration in this article 
is the connection between left and right precentral sulci, as 
derived from the ‘Desikan-Killiany’ parcellation (61) provid-
ed by the FreeSurfer software (62); this is shown in Figure 5.

We now demonstrate in this section several plausi-
ble algorithmic approaches by which our goal may be 
achieved. We start by proposing a relatively simple and 
naïve algorithm, observing its benefits and shortcomings, 
and then use these observations to derive increasingly 
advanced approaches, eventually presenting a total of 
four algorithms.

Algorithm 1: ‘Fixel mask’

Algorithm 1 is the simplest possible approach for incorpo-
rating the FD information from a diffusion model into esti-
mating FBC for a pathway of interest reconstructed using 
streamlines tractography. It is based on the observation 

Fig. 5. Visualisation of the pathway of interest to be used in a demonstration of the four fibre bundle capacity (FBC) quantification algorithms presented in the 
‘Methods’ section: three orthogonal views. The left and right precentral sulci are highlighted in orange; streamlines are coloured according to their local tangent 
orientation (red = left-right; green = anterior-posterior; blue = inferior-superior).
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Fig. 6. Visual demonstration of the operation of Algorithm 1 (‘Fixel mask’). For a particular pathway of interest (left panel: grey matter regions labelled orange, 
leading to selection of streamlines shown), those fixels traversed by the streamlines corresponding to that pathway are selected (right panel: red fixels within yellow 
voxels). The sum of the microscopic fibre densities of these selected fixels (equation numerator; encoded visually as fixel lengths) is divided by the mean streamline 
length (equation denominator: sum of streamline lengths divided by the number of streamlines) to yield the fibre bundle capacity (FBC) measure.

Fig. 7. (Left) Coronal projection of brain grey matter, with regions of interest used in the reconstruction of the pathway of interest highlighted; (a–d) Maximum 
intensity projection (MIP) spatial distributions of the density of white matter fibres attributed to the pathway of interest resulting from quantification using the four 
algorithms described in the ‘Methods’ section. The reconstructed bundle is that shown in Figure 5.

Fig. 8. The effects of partial volume on Algorithm 1. Left: A white matter fibre pathway connecting between two grey matter regions, shown as both fibre trajec-
tories and per-voxel fibre orientation/density. Right: The pathway is split into two bundles of interest based on parcellation of the voxels at the endpoints of the 
pathway; a subset of voxels (highlighted red) is intersected by both bundles.
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It is based on the observation that when a fixel is tra-
versed by streamlines belonging to the pathway of inter-
est in addition to other streamlines not belonging to that 
pathway, then rather than the entire fibre volume of that 
fixel contributing to the pathway, ideally only the fraction 
of that fixel attributed to the pathway of interest should 
be included. This is achieved as follows (Figure 9; see 
also pseudocode in Appendix):

Step 1.  Generate a whole-brain tractogram; define the 
pathway of interest as a subset of those whole-
brain streamlines.

Step 2.  For every fixel, calculate the fraction of the total 
streamlines density in that fixel that belongs to 
the pathway of interest.

Step 3.  The contribution of the fibre volume of each fixel 
to the fibre volume of the pathway of interest is 
modulated by the fraction of that fixel ascribed 
to the pathway of interest in step 2.

Step 4.  As in Algorithm 1, divide the total volume of the 
pathway by the mean streamline length to esti-
mate FBC.

The primary advantage of this approach over Algorithm 
1 is that if a fixel is only traversed by a small number of 
streamlines within the pathway of interest, that fixel only 
contributes a small amount of its fibre volume to the 
FBC result. The effect of this change from Algorithm 1 
is particularly evident in the inferior half of the brain in 
Figure 7b, where individual erroneous streamlines trajec-
tories contribute far less to the calculated fibre pathway 
volume.

While various streamline reconstruction biases mean 
that the fixel fibre volume fractions ascribed to the 
streamlines within the pathway of interest may not be 
precisely equivalent to the total fraction of the underly-
ing fibres within that fixel that belong to the biological 
pathway of interest, this algorithm certainly provides a 

not trivially extend to studies where many different 
pathways are assessed (e.g. when building the struc-
tural connectome over the whole brain).

• The local FD per voxel attributed to the pathway is rel-
atively consistent throughout the entire pathway, from 
the corpus callosum through the centrum semiovale 
and to the interface between grey and white matter. 
This is, however, contrary to how such tracts are con-
structed physically: as white matter fibres fan out from 
the narrow cross-section of the corpus callosum to a 
long strip of grey matter, the local voxel-wise density 
of the fibres within this specific pathway would be ex-
pected to decrease.

The way in which these effects can manifest, as well as 
the source of the limitation, is demonstrated in Figure 8.  
Here the selection of two bundles of interest from a 
larger white matter pathway is shown, both in the corre-
sponding streamlines and in the fixels to which they are 
ascribed. What is highlighted in red is the fact that if each 
of the two bundles is independently mapped to the cor-
responding voxels traversed, then for the set of voxels 
intersected by both bundles, all of the FD within those 
voxels will be attributed to both bundles. This has two 
effects: firstly, the spatial distribution of FD attributed to 
each bundle individually does not vary smoothly, failing 
to represent partial volume at the outer edge of each 
bundle similarly to that observed in Figure 7a; secondly, 
the sum of the calculated fibre connectivity of the two 
bundles would be greater than that of the actual white 
matter structure — without even necessitating tractog-
raphy reconstruction errors — as the FD in those voxels 
would contribute to the quantification of both bundles.

Algorithm 2: ‘Weighted fixel mask’

Algorithm 2 directly addresses the major imperfections 
of Algorithm 1 that arise due to partial volume effects.  

Fig. 9. Visual demonstration of the operation of Algorithm 2 (‘Weighted fixel mask’). The streamlines corresponding to the pathway of interest (left panel: solid 
lines) are a subset of a whole-brain tractogram (left panel: dashed lines). For each fixel in the image (right panel), the fraction of the streamlines density in that fixel 
corresponding to the pathway of interest can be quantified (right panel: red intensity). The contribution of the fibre volume within each fixel (encoded visually as 
fixel lengths) to the pathway of interest is modulated by the fraction of the streamlines density in that fixel attributed to the pathway of interest (multiplication in 
equation numerator); as with Algorithm 1, this volume is then divided by the mean streamline length (equation denominator: sum of streamline lengths divided by 
the number of streamlines) in the calculation of fibre bundle capacity (FBC).
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perceptible improvement over Algorithm 1, with the spa-
tial distribution of fibre volume within the pathway hav-
ing a much more biologically plausible appearance.

An inherent problematic issue in the design of 
Algorithm 2, however, is that it fails to enforce a consis-
tent intra-axonal cross-sectional area within the pathway. 
Along the length of the fibre bundle shown in Figure 
7b, there are local ‘hot-spots’ of supposedly increased 
fibre volume, both within the superficial white matter 
and where the bundle intersects the grey matter targets. 
While individual axons may have some modulation in 
their diameter along their length, such gross modula-
tion of macroscopic intra-axonal cross-sectional area is 
physically unrealistic for white matter pathways at the 
macro-scale. Observation of such in diffusion MRI data is 
therefore far more likely to be an artefact of image anal-
ysis and reconstruction. Furthermore, at the endpoints of 
the pathway, voxels containing partial volume between 
grey and white matter are likely to contain a smaller 
number of streamlines than those voxels entirely with-
in the white matter, which results in the fraction of fixel 
FD assigned to the pathway of interest being prone to 
quantisation effects; this contributes to the ‘speckly’ ap-
pearance of the density map in Figure 7b near the grey 
matter.

Algorithm 3: ‘Volume-averaged streamline weights’

In order to overcome the fundamental limitation of 
Algorithm 2, a solution is sought for deriving FBC that en-
forces a constant intra-axonal cross-sectional area along 
the length of the pathway. We clarify here that this con-
straint does not apply to the macroscopic span of space 
traversed by fibres of that bundle, but applies specifical-
ly to the intra-axonal portion of the bundle. For exam-
ple: when fibres within a tightly packed bundle diverge 

Fig. 10. Visual demonstration of the operation of Algorithm 3 (‘Volume-averaged streamline weights). For each individual streamline, the total fibre volume at-
tributed to that streamline (numerator, first equation) is based on the products of the fixel fibre volumes (encoded visually as fixel lengths) and the fraction of the 
streamlines density in each of those fixels attributed to the streamline of interest (left panel: encoded as red intensity); this fibre volume is then divided by the length 
of that individual streamline (denominator, first equation) to ascribe a ‘weight’ ws to each individual streamline s (right panel: streamline colours). The fibre bundle 
capacity (FBC) of the pathway of interest is then the sum of the weights ascribed to the streamlines attributed to the pathway of interest (right panel: solid lines).

from one another (commonly referred to as ‘fanning’), 
the surface area of the subset of a plane encapsulating 
all fibres in the bundle may increase (the ‘macroscopic 
cross-section’), but the sum of intra-axonal cross-sectional 
areas should remain unchanged if the axon diameters are 
consistent along their length (e.g. Figure 2; Figure 3e–f); 
here it is the latter definition that we advocate should be 
constrained.

Algorithm 3 is an initial realisation of this concept. It 
enforces constant intra-axonal cross-sectional area of the 
pathway, by requiring that each streamline in the path-
way contributes a constant fibre cross-sectional area 
along its entire length. Hence, unlike Algorithms 1 and 2, 
here contributions towards FBC are made not per fixel, 
but per streamline (in the context of semi-global trac-
tography algorithms, these parameters are sometimes 
referred to as ‘weights’).

This algorithm operates as follows (Figure 10; see also 
pseudocode in Appendix):

Step 1.  Using the whole-brain tractogram, calculate the 
total streamlines density in each fixel.

Step 2.  For each streamline, calculate the fibre volume 
to be attributed to that streamline. Every fixel 
traversed by the streamline contributes a fraction 
of its fibre volume to the sum for that streamline, 
based on the fraction of the total streamlines 
density in that fixel that was contributed by that 
particular streamline.

Step 3.  Convert the fibre volume of each streamline to 
a fibre cross-sectional area, by dividing by the 
length of that streamline.

Step 4.  Sum the cross-sectional areas of the streamlines 
belonging to the pathway of interest to derive 
FBC.
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FD derived from spherical deconvolution (Figure 11a) 
than the original tractogram where every streamline con-
tributes equally (Figure 11b). However, it still does not 
provide an entirely faithful representation of the under-
lying white matter FD field. This is perhaps expected 
given the nature of the algorithm itself. From a physi-
cal perspective, the operation of this algorithm can be 
thought of as taking the sum of fibre volumes attribut-
ed to the streamline by each fixel (which may be great-
er or lesser at different points along the streamline) and 
spreading this fibre volume evenly along the length of 
the streamline in order to ascribe to it a constant fibre 
cross-sectional area. While this process does go some 
way to incorporating fibre volume information from the 
diffusion model into the tractogram, it fails to directly en-
force consistency between the estimated FD and recon-
structed streamlines density for each fixel of the image 
(the residual discrepancy visible between Figure 11a and 
11c). In the case of the specific pathway of interest used 
in this demonstration, the FD within the corpus callosum 
projected by the tractogram is clearly greater than that 
indicated by the image data; this means that the calcu-
lated FBC for this connection relative to other pathways 
when using Algorithm 3 would likely be an over-estimate.

Algorithm 4: ‘Optimised streamline weights’

Addressing the remaining problem with the approach 
described in Algorithm 3 — the fact that the fibre vol-
umes estimated from the tractogram are not a sufficiently 
accurate reconstruction of the fibre volumes estimated 
from the diffusion model, as shown in Figure 11 — is 
a fundamental requirement if we are to consider the 
streamline weights truly quantitative. If the streamlines 
trajectories and ascribed weights are reflective of the 
underlying biological connectivity, then the spatial distri-
bution of FD throughout the white matter represented 
within this connectivity-based reconstruction should ac-
curately match estimates of this measure that are derived 
from the image data directly.

While this algorithm produces a measure of fibre 
cross-sectional area per streamline rather than fibre vol-
ume per fixel, it is still possible to reconstruct the latter; 
this allows us to generate a spatial map of FD attribut-
ed to the pathway of interest that can be compared to 
Algorithms 1 and 2. The product of a cross-sectional area 
with a length yields a measure of volume; hence, each 
streamline in the tractogram contributes a fibre volume 
to every voxel it traverses, based on the product of its 
weight and the length of the streamline segment that in-
tersects that voxel. The result of this process is shown in 
Figure 7c. Compared to the previous two algorithms, this 
approach produces an FD map for the resulting pathway 
that appears quite biologically reasonable, with a max-
imal microscopic FD within the narrow confines of the 
corpus callosum that decreases as those fibres fan out 
towards the cortex.

There does, however, remain one slight inadequacy 
with this algorithm. Consider an experiment where, in-
stead of deriving a spatial map of reconstructed fibre 
volume for a particular pathway of interest only (as we 
have been doing here), we instead map the spatial dis-
tribution of reconstructed fibre volume of the entire trac-
togram. If the streamlines weights are faithful to the in-
tra-axonal cross-sectional areas of the biological fibres 
following the trajectories reconstructed by those stream-
lines, then one would expect an accurate reproduction 
of the fibre volumes that were estimated from the vox-
el-wise diffusion model throughout the white matter (or 
equivalently: applying the forward model to the whole-
brain tractogram should yield the empirical diffusion sig-
nal, as demonstrated in the ‘Comparing tractograms and 
image data’ section and Figure 3). Note this process is 
very similar to track density imaging (TDI) at native DWI 
resolution,63–65 incorporating the ability for streamlines to 
contribute differentially towards the image.

This experiment is shown in Figure 11. The recon-
structed FD from the outcome of Algorithm 3 (Figure 
11c) is closer to the voxel-wise estimate of white matter 

Fig. 11. Comparison of spatial distributions of track densities from whole-brain tractogram data with the density of white matter fibres as estimated through spherical 
deconvolution. (a) The orientationally averaged mean of the white matter orientation distribution functions (the l=0 term of the spherical harmonic expansion) as a mea-
sure of total fibre density within each voxel. The distribution of TD within a whole-brain tractogram should ideally match these data. (b–d) The density of streamlines 
in the whole-brain tractogram when the contribution of each streamline to the map is modulated as follows: (b) no modulation (all streamlines contribute equally); (c) 
modulated by the weights ascribed to the streamlines by Algorithm 3 (‘Volume-averaged streamline weights’); (d) modulated by the weights ascribed to the streamlines 
by Algorithm 4 (‘Optimised streamline weights’).
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distribution of FD of the entire tractogram is shown in 
Figure 11d. Crucially, the latter demonstrates a highly ac-
curate reproduction of the underlying FD field estimated 
from the diffusion model (Figure 11a), highlighting how 
this approach provides a tractogram-based connectivi-
ty model that obeys the fundamental spatial constraints 
imposed by the physical nature of the underlying biolog-
ical fibre structure. It is this observation that permits the 
streamline weights estimated by such algorithms to be 
used in the quantification of FBC (within the constraints 
imposed by other limitations associated with diffusion 
MRI streamlines tractography (66)).

Inter-subject connection density normalisation

Whenever quantitative data are to be compared across 
subjects, an important distinction must be made be-
tween absolute and relative quantitative measures. 
For instance, when assessing the fractional anisotropy 
(FA) measure (67) from the diffusion tensor model (68), 
there is no need to modulate these values differentially 
between subjects, as it is an absolute measure (for any 
given DWI acquisition scheme) and therefore any differ-
ences in this metric between individuals can be inter-
preted according to the properties encapsulated within 
that metric. However, if a quantitative measure is relative 
to other latent parameters that vary across individuals, 
care must be taken to appropriately handle the effects of 
those latent parameters, in order to be able to interpret 

This limitation is addressed by designing an algorithm 
that explicitly seeks to derive a set of streamline weights 
that result in an accurate reconstruction of the underly-
ing fibre volumes estimated from the diffusion model (or 
equivalently, an accurate reconstruction of the empirical 
diffusion signal using a forward model). This basic con-
cept is shown diagrammatically in Figure 12 and might 
proceed, for example, as follows (see also pseudocode 
in Appendix):

Step 1.  Initially assign a unity weight to each streamline.
Step 2.  Using the whole-brain tractogram, based on the 

current streamline weights, calculate the total 
streamlines density in each fixel.

Step 3.  For each fixel, calculate the difference between 
the FD estimated from the diffusion model and 
the total attributed streamlines density.

Step 4.  For each streamline, increase or decrease the 
weight in order to minimise the error quantified 
in step 3.

Step 5.  Loop back to Step 2 until some termination crite-
rion is met.

Step 6.  Sum the weights of those streamlines belonging 
to the pathway of interest to derive FBC.

This is the mechanism by which the ‘spherical- 
deconvolution informed filtering of tractograms 2 
(SIFT2)’ method (22) operates. The spatial distribution of 
FD within the pathway of interest after having applied 
the SIFT2 algorithm is shown in Figure 7d, and the spatial 

Fig. 12. Visual demonstration of the operation of Algorithm 4 (‘Optimised streamline weights’). For a whole-brain tractogram (top left panel), the total streamlines 
density traversing each fixel (bottom left panel; encoded visually as fixel lengths) may not match the fibre volumes estimated from the diffusion model (bottom 
panel; fixel lengths). This algorithm modulates the weight ws ascribed to each streamline s (top right panel: streamline colours) in order to achieve correspondence 
between the total streamlines density traversing each fixel (bottom right; fixel lengths) and the diffusion model fibre density estimate (bottom panel). The fibre 
bundle capacity (FBC) measure for the pathway of interest is the sum of the weights ascribed to those streamlines attributed to the pathway of interest (top right 
panel; solid lines only; streamline colours).
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incontrovertible, it is in fact an imperfect solution to con-
nection density normalisation. By using a fixed number of 
streamlines per subject, each streamline effectively rep-
resents a fixed, subject-specific fraction of the total white 
matter fibre connectivity. While comparing such quanti-
tative measures across subjects is acceptable as long as 
they are properly interpreted as such, this metric fails to 
take into account a number of factors that may differ be-
tween subjects that may correspondingly introduce biases 
or unwanted variance into such an analysis; this includes 
both biological differences (e.g. widespread reductions in 
FD) and features of the tractogram reconstructions (e.g. 
differences in streamline lengths). For a genuine quanti-
tative comparison of absolute fibre connection densities 
between subjects, greater care must therefore be taken.

Here, we demonstrate our recommendation for how 
this normalisation should be achieved when using specif-
ically the model underlying the ‘SIFT’ (19) and ‘SIFT2’ (22)  
methods, which is itself directly dependent on the AFD 
measure. Use of alternative reconstruction techniques (in 
terms of either the underlying diffusion model or alter-
native semi-global tractography methods) would require 
that appropriate comparable steps be taken.

The SIFT model defines the proportionality coefficient 
μi for subject i, which relates the global sum of track den-
sity (TD) to the global sum of estimated FD in the sin-
gle-subject reconstruction, computed across all fixels f 
in that subject:

µ
∑
∑
ε

ε

=
FD
TDi

ff i

ff i

 (2)

(For simplicity, the influence of the processing mask with-
in the SIFT model (19) is omitted here.)

In the original SIFT method, this parameter permits 
direct comparison between the streamlines density 
and fibre volume within each fixel, in order to drive the 
streamlines filtering process. In SIFT2, it approximately 
centres the distribution of streamlines weights about 
unity. Note that all parameters within this expression are 
subject-specific.

As FD is a measure of volume (dimensions L3) and 
TD is a sum of streamline lengths (dimensions L), µ is 
a measure of cross-sectional area, with dimensions L2. 
For every streamline, this parameter (multiplied by the 
weight assigned to that streamline in the case of SIFT2) 
is a measure of the intra-axonal cross-sectional area rep-
resented by that streamline. For each voxel traversed by 
the streamline, the product of this cross-sectional area 
with the length of the streamline intersection within that 
voxel produces the fibre volume contributed to that fixel 
by that particular streamline within the model.

In the context of FBC quantification, we are interested 
not in these fixel-wise fibre volumes, but the connection 
densities of specific macroscopic pathways of interest. 
Any such pathway is represented as a subset of stream-
lines in the whole-brain tractogram. For an example 

any differences in that metric as being specific to that 
metric rather than some nuisance confound.

In the fixel-based analysis (FBA) framework (69), which 
enables statistical analysis of white matter quantitative 
measures in the presence of crossing fibres, FD estimates 
must be comparable across subjects throughout some 
common template space. In the context of apparent 
fibre density (AFD) quantification (70) using the spherical 
deconvolution model (59), the fibre orientation distribu-
tions (FODs) (i.e. the representation of estimated fibre di-
rections and densities in each voxel) are deliberately not 
normalised either to a unit integral in each voxel or to the 
intensity of the b=0 image (i.e. volume acquired with no 
diffusion sensitisation) in each voxel. This makes the size 
of the FOD directly proportional to the magnitude of the 
DWI signal (which is itself proportional to intra-cellular 
volume at high b-values (70)); the size of the FOD is also 
inversely proportional to the magnitude of the response 
function used for deconvolution (70):

1∗ ∗−FOD RF = DWI FOD = DWI RF  (1)

(‘RF’: response function; ‘*’: convolution operation; 
‘*−1’: deconvolution operation)

Enabling direct comparison of this measure across 
subjects therefore necessitates global inter-subject in-
tensity normalisation, in order for AFD to be minimally 
influenced by nuisance variables. This typically includes 
B1 bias field correction, scaling of DWI intensities to a 
common intensity value according to some representa-
tive image statistic (e.g. mean b=0 magnitude in white 
matter), and use of a group average response function 
for deconvolution (70): these together ensure that ‘one 
unit of AFD’ is comparable across subjects, rather than 
being defined relative to subject-specific parameters 
(e.g. coil loading, scanner receiver gain, subject-specific 
response function magnitudes).

In a similar manner, quantitative analysis of FBC re-
quires inter-subject connection density normalisation: 
that is, if we quantify the intra-axonal cross-sectional 
area of a particular pathway (e.g. edge of a connectome) 
across multiple subjects, we want these quantities to be 
directly comparable across subjects, without being bi-
ased by confounding factors that destroy the physical 
interpretation of this measure or introduce substantial 
correlations with nuisance reconstruction parameters.

In the brief history of diffusion MRI tractography con-
nectomics, this normalisation has most commonly been 
achieved by simply generating the same number of 
streamlines for each subject. Or, expressed in an alterna-
tive way: if half as many streamlines were generated for 
one subject as there were for all other subjects, it would 
seem intuitively logical that the streamline counts in each 
edge for that subject should be doubled in order for the 
raw values stored in the connectome matrices to be com-
parable to other subjects. While generation of an iden-
tical number of streamlines across subjects may seem 
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The global intensity normalisation and group average re-
sponse function components of the recommended 
pre-processing pipeline for AFD analysis are tailored to 
make equivalent across subjects the values of DWIref and 
AFDref, respectively. As such, if this pipeline is followed, 

the term AAFFDD
DDWWII

rreeff

rreeff

 is identical across subjects by construc-

tion, and simply multiplying the sum of streamline weights 
within a pathway of interest (e.g. a connectome edge) by 
μi permits direct quantitative comparison of FBC between 
subjects, in a manner that appropriately accounts for 
many variables that would otherwise confound the inter-
pretation of streamline counts as ‘connection density’.

The consequences of this connection density normal-
isation are demonstrated in Figure 13. This demonstra-
tion consists of 16 individual synthetic subjects, each of 
whom possesses a single white matter fibre bundle. The 
fundamental properties of this bundle — length, width, 
and microscopic FD per voxel — vary among the sub-
jects; additionally, the number of streamlines seeded in 
each white matter voxel is also varied. The lower part 
of Figure 13 then demonstrates visually how the quanti-
fied ‘connectivity’ of this bundle across the 16 subjects 
changes in magnitude across the different subjects, de-
pending on the exact measure of ‘connectivity’ that is 
utilised. The connectivity measures demonstrated are as 
follows:

• The macroscopic bundle volume V;
• The streamline count N;
• The number of streamlines divided by the length of 

the streamlines41,71;
• The mean FD sampled along streamlines within the 

bundle;
• FBC, incorporating the proposed connection density 

normalisation.

We assert that the proposed connection density normali-
sation (highlighted in green in Figure 13) is most appropri-
ate for quantitative comparison of endpoint-to-endpoint 
connectivity across subjects; it matches the theoretical 
properties of the FBC metric:

• Scales with the cross-sectional area of the bundle;
• Scales with the underlying FD in each voxel;
• Does not scale with the length of the bundle;
• Does not scale with the number of streamlines 

generated.

DISCUSSION

As stated in the ‘Introduction’ section, the information 
presented in the ‘Methods’ section is intended to serve 
two principal purposes:

1. To properly contextualise a class of methods already 
present in the literature that perform tractogram 

pathway p (which is reconstructed by a subset of stream-
lines s), it is the sum of intra-axonal cross-sectional areas 
of the streamlines within that pathway that gives a mea-
sure of the intra-axonal cross-sectional area of the path-
way FBCp,i:

µ ∑ εFBC = . Wp,i i S p si
i

 (3)

For subject i, the connection density FBCp,i of pathway 
p is the product of the subject-specific proportionality 
coefficient µi and the sum of streamline weights wi of 
those streamlines si belonging to pathway p.

(Note that in the original SIFT method, ws = 1 for all 
retained streamlines after filtering, but µi is modulated 
during the filtering process.)

This equation suggests that if one wants to compare 
FBC across subjects (whether for an individual bun-
dle of interest or an entire connectome matrix), simply 
multiplying the sum of bundle streamlines weights by μi 
is sufficient to produce a measure of FBC that can be 
compared across subjects. However, parameter μi only 
considers the fibre densities and track densities within 
a single subject; in order to compare these quantities 
between subjects, we must ensure that parameter μi is 
adjusted appropriately to account for between-subject 
variation, by ensuring that the fundamental scaling un-
derlying this parameter is equivalent between subjects.

We can extend Equation (2) as follows:

µ
∑
∑
ε

ε

=
AFD
DWI

. x y z .
FD
TDi, adj

ref

ref

ff i

ff i

 (4)

• μi,adj is the proportionality coefficient of subject i ‘ad-
justed’ for facilitation of inter-subject comparison;

• The first term, 
AAFFDD
DDWWII

rreeff

rreeff

, is specific to the spherical de-

convolution model if processing were to be performed 
independently for each subject. It relates to the global 
scaling of AFD magnitudes within that subject, which 
is dependent on the magnitude of the diffu-
sion-weighted signal (DWIref) and the size of the re-
sponse function for deconvolution that forms the ref-
erence unit of AFD (AFDref).

• The second term, x y z , is the volume of each voxel in 
the image. This multiplier converts AFD (or fibre volume 
fractions from a partial volume-based diffusion model) 
into estimated intra-axonal volumes in mm3, thereby ap-
propriately scaling connectivity estimates in cases where 
the DWI voxel size differs across subjects (this also coinci-
dentally gives μi,adj and hence FBC, units of mm2).

• In the specific case of the SIFT model, no term relat-
ing to the inter-subject scaling of TD appears in this 
expression: this is calculated in fixed units of mm re-
gardless of DWI spatial resolution, and therefore can-
not vary across subjects (this may, however, not be the 
case for alternative models or methods).
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within a single individual to estimation of relative 
connection strengths of a bundle across individuals 
(Figure 13).

Relationship to existing methods

In ‘Algorithm 4: “Optimizsed streamline weights”’, the 
fact that the existing SIFT2 algorithm operates on the 
same mechanism as that arrived at through the course 
of logic presented is not coincidental. Here, we note that 
there are a number of other existing methods that also 
operate similarly:
• The ‘linear fascicle evaluation (LiFE)’ (21) and ‘convex op-

timisation modelling for microstructure-informed trac-
tography (COMMIT)’ (20) methods both operate on an 
identical premise — modulating the weight of contribu-
tions from individual streamlines within the tractogram, 

manipulation for the purposes of quantitative tractog-
raphy by elucidating:
a. Why these methods are designed the way they are 

(see also ‘Relationship to existing methods’ section);
b. That many ‘alternative’ methods for white matter 

connectivity analysis frequently suggested infor-
mally by community members have already been 
considered, but have specific weaknesses com-
pared to established methods;

c. That the goal of ‘quantifying bundle connectivity’ 
is in fact accessible using these existing methods 
(while of course acknowledging all of the limita-
tions of such methods and other components of 
the analysis pipeline).

• To demonstrate how to appropriately extend the ap-
plication of these methods from the correct estimation 
of relative connection strengths of different bundles 

Fig. 13. Demonstration of the efficacy of the proposed inter-subject connection density normalisation. Each of the 16 panels represents a synthetic subject, contain-
ing one white matter bundle reconstructed by streamlines. For each, the number of streamlines generated N, and the ‘proportionality coefficient’ µ within the SIFT 
model (derived from Equation 2), are provided. The matrix representations at the bottom show visually the relative connection densities quantified for the different 
bundles, for various ‘connectivity’ metrics of interest: volume of bundle V; number of streamlines N; number of streamlines divided by the streamline length; the 
mean fibre density (FD) sampled along streamlines within the bundle; the proposed fibre bundle capacity (FBC) measure incorporating connection density normali-
sation (highlighted in green).
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the capacity for information transmission, this metric 
exhibits somewhat desirable behaviour in the pres-
ence of such heterogeneity, at least within the limita-
tions of expressing such as a single scalar quantity. It 
should also be noted that conventionally acquired dif-
fusion-weighted image data are unable to resolve dif-
ferences in axon diameter (89,90) — indeed even state-
of-the-art acquisitions and hardware struggle to resolve 
such in the presence of crossing fibres (91–93) — so 
overcoming this limitation in specificity is non-trivial.

• While the presence of myelin does influence the con-
duction of action potentials, conventionally acquired 
diffusion MRI data are relatively insensitive to the pres-
ence or absence of such (94).

• This metric is intentionally not proportional to length, 
unlike bundle volume. Although bundle length may 
alter axon conduction delays (95), we consider such 
to be an independent property of white matter con-
nections that does not directly influence the notion of 
‘bandwidth’.

• Unlike macroscopic bundle volume (or indeed 
cross-sectional area), this metric additionally considers 
the density of axonal packing within the white matter 
traversed.

The prevalence of studies utilising quantitative metrics of 
white matter bundles such as streamline count or bundle 
volume highlight the demand for an appropriate quan-
tification of ‘connectivity’ of white matter bundles. We 
posit that, compared to other univariate metrics already 
in use in the community, the FBC metric is in fact more 
faithful to a subjective notion of ‘connectivity’, based on 
both the logic presented above and the evidence shown 
in Figure 13.

Whole-brain tractography is compulsory

With the exception of Algorithm 1, all other algorithms 
described here necessitate the use of a whole-brain trac-
togram reconstruction, even in the scenario where it is 
only the connectivity of one specific white matter bundle 
that is of interest. This includes the SIFT2 algorithm shown 
as Algorithm 4, and similar methods described above in 
the ‘Relationship to existing methods’ section. The rea-
son for this is as demonstrated in Figure 8 in relation to 
Algorithm 1. If a white matter bundle (as defined as a 
set of streamlines that is not a whole-brain tractogram) 
is interpreted in isolation, then anywhere there exists a 
voxel that contains collinear fibres not belonging to that 
bundle, such a quantification will erroneously attribute 
the entire FD in that orientation to that bundle. Given the 
contrast between the complexity of white matter bundle 
trajectory/shape and the fixed lattice of an image voxel 
grid, this will always occur. Note that this is an issue re-
gardless of whether or not any adjacent bundle sharing 
that voxel is or is not also ‘of interest’ experimentally.

in such a way that the streamlines densities are faith-
ful to the underlying image information — except  
that they operate directly on the diffusion image data, 
as explained in the ‘Comparing tractograms and 
image data’ section.

• The earlier ‘BlueMatter’ (18), ‘MicroTrack’ (72), and 
‘SIFT’ (19) methods also lie within this classification: 
while these algorithms instead select a subset of 
streamlines that together produce a faithful repre-
sentation of the image data, this is mathematically 
equivalent to setting the contribution weights of those 
streamlines omitted from the tractogram to zero.

• Another method entitled ‘global tractography with 
embedded anatomical priors’ (73) optimises stream-
line weights based on a tractogram initially construct-
ed using streamlines tractography, but also optimises 
other features of the reconstruction (such as stream-
lines trajectories) based on the diffusion image data in 
a manner more similar to genuinely global tractogra-
phy algorithms.

It has been shown that utilisation of such methods yields 
white matter connectivity estimates with properties that 
are more faithful to biological reality (44) and that their 
influence on network connectivity analyses is non-neg-
ligible (41). Such methods are publicly accessible and 
have already been adopted in some studies in the neu-
roscience research literature (74–87).

Qualifying the ‘FBC’ metric

The origins and biological significance of the FBC metric 
require explicit communication, as it is a frequent source 
of confusion.

• It should be noted that the quantification of specifi-
cally total intra-axonal cross-sectional area is in part 
a direct consequence of the proportionality of the 
diffusion MRI signal (under certain conditions) to the 
local intra-axonal volume of fibre bundles (70), in con-
junction with the spatial/orientation information of the 
tractogram reconstruction. It is not a metric that was 
devised in isolation, with methods then developed to 
quantify such, but a natural consequence of what can 
be quantified given the data available.

• Where there is heterogeneity in axon diameters, the 
FBC metric will not be a proportional estimate of axon 
count, as was proposed for simplicity in the ‘Metric of 
“connectivity”’ section. The influence of heterogeneity 
in axon diameters can be considered as follows. For a 
given fixed value of FBC, there could be many axons of 
small diameter or few axons of larger diameter. In the 
latter case, while there are fewer connections, conduc-
tion velocity will be greater, as will be the potential fir-
ing rate (88). As such, when seeking a univariate quan-
tification of ‘connectivity’, which specifically relates to 
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constrained tractography (ACT) (16), though technical 
improvements can reduce this variance (97,98). While it 
is tempting to normalise the connectome edge values by 
scaling for the number of streamlines in the connectome 
(rather than using the number of streamlines in the tracto-
gram as reference) to ‘compensate’ for this inter-subject 
discrepancy, it is also entirely possible for differences in this 
parameter to be reflective of a genuine effect of interest.

For instance, consider the case where a large tumour 
within the white matter in one hemisphere results in a 
substantial number of streamlines terminating within 
that tumour, rather than reaching some alternative grey 
matter target. If the subject-specific tumour does not ap-
pear as a node within the connectome parcellation, and 
the total number of streamlines generated across sub-
jects is equivalent, then the total number of streamlines 
in the connectome for this particular subject would be 
decreased relative to other subjects (as the total num-
ber of streamlines is the same, but the fraction of those 
assigned to the connectome is reduced). A useful inter-
pretation here is to treat the tumour as a ‘latent connec-
tome node’. Consider the situation if the tumour were 
to be segmented and included in the connectome par-
cellation, with streamlines terminating within that node 
and being assigned as such; but following connectome 
construction, that node would then be erased from the 
connectome matrix. We now consider two options for 
normalisation:

1. If a fixed number of streamlines in the tractogram per 
subject were to be used, then the subject with the tu-
mour would have a reduced total connection density 
within the connectome, particularly within bundles 
affected by the tumour, which is likely to be at least 
somewhat faithful to biological reality.

2. If instead the connectomes were scaled based on the 
number of streamlines in the connectome in each 
subject (bearing in mind that this scaling would by 
necessity occur after removal of the tumour node if 
the total connection density is to be equivalent across 
subjects), the connection densities of all pathways in 
that subject would be increased as a consequence of 
that process. This would be misleading, as it would 
suggest that all white matter bundles not affected by 
the tumour in that subject have increased connectivity 
in that subject relative to healthy controls.

The important observation here is that while the number 
of streamlines in the tractogram reconstruction may not 
be equal to the number of streamlines in the connec-
tome (and this ratio may vary across participants) and this 
effect can be influenced by inadequacies in data process-
ing and reconstruction (96), this is not the only source of 
such mismatch and should therefore be interpreted with 
caution. For instance, consider the influence of the re-
constructed corticospinal tract, where streamlines exit 
the inferior edge of the image data via the spinal column. 

The functionality afforded by the use of a whole-brain 
tractogram — whether very directly and explicitly in the 
case of Algorithm 2, or more indirectly/implicitly in other 
algorithms — is to determine the fraction of the fibre vol-
ume within each fixel that should be attributed to the 
bundle of interest, in order to prevent the over-attribution 
of FD that occurs in Algorithm 1. As such, we here reca-
pitulate a message crucial to prevent further erroneous 
use of these methods in the community:

 Semi-global methods must be applied to a whole-brain 
tractogram, with interrogation of bundles of interest 
performed after the fact (as shown in Algorithm 4).

If this condition is not satisfied, then when interrogating 
discrepancies between streamlines density and FD, such 
algorithms are unable to distinguish between differences 
that arise due to tractogram reconstruction biases and 
differences that arise due to the presence of biological 
fibre pathways that contribute to the diffusion-weighted 
signal but are absent from the streamlines reconstruc-
tion due to erroneous prior removal (see Figure 8). Note 
that this description deliberately does not exclude the 
prospect of tractogram manipulation in between whole-
brain fibre-tracking and semi-global algorithm appli-
cation — for instance, one could envisage that some 
approach for data-driven classification and removal of 
false-positive streamlines could be applied in between 
these steps — but it is vital that the tractogram provided 
to a semi-global optimisation process comprehensively 
cover the domain of plausible fibre trajectories within the 
imaged region, as such a comprehensive set is necessary 
for explaining the diffusion-weighted signal.

Alternatives for connection density normalisation

A common idea in applications of white matter tractog-
raphy, particularly in the construction of the structural 
connectome, is that there is a range of other parameters 
that should be applied as multiplicative factors to con-
nectivity measures, in order to ‘compensate’ for varia-
tions in those parameters that may indirectly influence 
the results of streamlines tractography or connectome 
construction. Here, we take the opportunity to clarify a 
few concepts that have arisen in our own communica-
tions on the topic.

Number of streamlines in the connectome

Although it is trivial to use a fixed number of streamlines 
for tractogram construction across subjects for the implicit 
purpose of connection density normalisation, typically the 
proportion of those streamlines successfully assigned to 
a pair of parcels (and that hence contribute to the con-
nectome) will vary between subjects (96), due to a range 
of factors; note that this still occurs even with the con-
trolled termination of streamlines such as in anatomically 
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We instead suggest that intracranial/brain volume (and 
other such regressors) may be better handled as nui-
sance parameters when performing statistical testing. In 
this way, the hypothesis being tested would better re-
flect the intention of the experiment, for example, ‘the 
connection density of this pathway is not equivalent be-
tween the two groups, the magnitude of which cannot 
be attributed to differences in brain volume alone’.

The effect of inter-node distance in streamlines 
tractography

The relationship between white matter pathway length 
and estimated connection density has attracted consid-
erable interest in this field (19,41,71). There are, howev-
er, multiple mechanisms by which pathway length may 
influence streamlines-based connectivity; and in our ex-
perience these are regularly conflated or confused. We 
therefore take this opportunity to disambiguate the ef-
fects of which we are aware.

Most frequently, discussion regarding bundle length 
biases are in reference to the effect arising from homoge-
neous seeding throughout the white matter: because lon-
ger pathways present a greater volume in which streamline 
seeds may be drawn, they will typically be reconstructed 
by a greater number of streamlines than shorter pathways. 
A naïve direct correction of this seeding density effect is to 
make the contribution of each streamline to the connec-
tome the reciprocal of its length (71); this has been shown 
to be incomplete, as the graph theory metrics derived 
from connectomes calculated in such a manner differ sig-
nificantly from those produced using more comprehensive 
data-driven correction of fibre tracking biases (41).

A distinctly different effect is attributed to probabi-
listic streamlines algorithms. Due to the spatial disper-
sion of streamlines when using a probabilistic tracking 
algorithm, biologically connected nodes that are dis-
tant from one another are likely to have a reduced re-
constructed connection density: streamlines emanating 
from one parcel increasingly disperse from one another 
as a function of distance from that parcel, such that the 
fraction of those streamlines reaching the intended tar-
get decreases as a function of distance (1). This effect is, 
however, not a bias that can be corrected naïvely. For in-
stance, consider two distant nodes that are not connect-
ed biologically, yet their immediate spatial neighbouring 
parcels are connected biologically, and therefore there 
is a plausible white matter pathway between them. The 
connectivity estimated between these two nodes using a 
probabilistic streamlines algorithm will be increased by 
this probabilistic dispersion effect relative to if the white 
matter pathway were short. Data regarding inter-node 

1 We note that deterministic streamlines algorithms do not solve the issue de-
scribed here. With such methods, instead of the fraction of streamlines reaching 
the intended target decreasing smoothly as a function of distance, the likeli-
hood of a dichotomous switch from all true connections to all false connections 
increases as a function of distance.

If no connectome parcel is explicitly defined at this lo-
cation, then these streamlines will not contribute to the 
connectome, despite the known anatomical validity of 
this bundle and its non-negligible contribution to the 
diffusion-weighted signal. Variance in the density of this 
bundle across subjects could therefore manifest as dif-
ferences in streamline count within connectomes across 
subjects; the latter would not ideally be interpreted as 
either indicative of a difference in reconstruction efficacy, 
or a ‘nuisance’ effect between individuals,

Intracranial/brain/white matter volume

Another concept commonly raised in the discussion on 
this topic is that: if subject brains vary considerably in 
physical size, but the same number of streamlines is gen-
erated for each, then a comparison of streamlines den-
sity between them must be biased, as each individual 
streamline reconstructed in a physically larger brain likely 
represents a larger density of biological fibres than does 
each individual streamline reconstructed in a physically 
smaller brain. Users of such methods correspondingly 
often propose dividing all estimates of connectivity by 
the estimated intracranial/brain/white matter volume of 
that subject, as a ‘correction’ for this effect. There are a 
number of comments to be made on this concept:

• It pre-supposes that if the cross-sectional area of a 
bundle scales directly in proportion to brain size, then 
that bundle should be reported as possessing equiv-
alent ‘connectivity’ between brains of different sizes; 
this is the intent of such scaling and so should be ap-
preciated as such.

• There is an implicit assumption in this proposal that, 
even between the largest and smallest of brains, the 
voxel-wise FD within the white matter is equivalent; 
this is, however, not guaranteed to be the case.

• Performing scaling as proposed in the ‘Inter-subject 
connection density normalizsation’ section intrinsically 
handles this confound in an appropriate fashion. A larg-
er brain will likely have more white matter voxels and 
therefore a larger FD sum, but it will also have a great-
er sum of streamline lengths. Consequently, while FBC 
may be greater in a large brain than in a small brain if the 
bundle size scales in direct proportion to brain size, this 
would not be an unwanted confound of brain size, but a 
realistic measurement of a greater information-carrying 
capacity of that fibre bundle in the larger brain.

• The interpretation of experimental outcomes also 
changes by necessity through such scaling. For in-
stance, if one were to compare the connection density 
of a specific bundle of interest between two groups, 
where this brain volume scaling factor were applied 
to the connectivity estimates prior to the comparison, 
then the actual hypothesis being tested would be ‘the 
connection-density-divided-by-white-matter-volume 
of this pathway is not equivalent between two groups’.
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There is an additional clarification required regarding 
terminology between these two cases:

• In FBA, the ‘fibre bundle cross-section (FC)’ metric is in 
fact a change in the cross-sectional area; in the calcu-
lation of the FDC metric, this is used to modulate the 
local quantitative measure;

• In tractogram-based connectivity quantification, FBC 
of any particular pathway is typically directly propor-
tional to the absolute bundle cross-sectional area.

Another concept frequently raised in communications 
in this context is the prospect of an alternative quantita-
tive metric for connectome construction, which exploits 
the quantitative nature of these per-fixel metrics. That 
is, instead of summing streamlines weights within a 
pathway (as an estimate of intra-axonal cross-sectional 
area), quantitative values from some metric of interest 
are instead sampled along the corresponding stream-
lines trajectories. This could conceivably be done in 
one of two ways, shown as Algorithms 5a and 5b in 
Figure 14:

a. From the set of streamlines constituting a pathway of 
interest/connectome edge, derive a mask correspond-
ing to the areas (either voxels or fixels) in which the 
values of the quantitative metric should be sampled; 
some statistic from these elements (e.g. the mean) is 
then calculated to produce a single scalar value per 
connectome edge.

b. For each streamline, measure the value of the metric at 
every point along the streamline trajectory; calculate 
some statistic from the samples along each stream-
line (e.g. the mean) in order to produce a single sca-
lar value per streamline; calculate some statistic from 
these per-streamline values (e.g. the mean) to produce 
a single scalar value per connectome edge.

The intent behind such suggestions is that these 
quantities would exhibit a reduced influence from the 
errors and biases associated with streamlines tractog-
raphy compared to the FBC metric, would incorporate 
the quantitative nature of those underlying metrics, 
and would inherit the fixel specificity of the FBA metrics 
(there are already many applications that have utilised 
such sampling along streamline trajectories but in con-
junction with voxel-wise imaging metrics). Such quanti-
fication should, however, be interpreted in accordance 
with the relevant calculations. For instance, calculating 
the mean of the FD metric along a pathway using one 
of the two approaches discussed previously provides a 
measure that could be interpreted as ‘mean intra-axo-
nal volume fraction within the bundle’; which, while po-
tentially informative, would not be an absolute measure 
of bundle connectivity, as it neither scales with bundle 
width (Figure 13), nor does it consider partial volume 
with other bundles (as demonstrated in Algorithm 1, 
Figures 7 and 8).

distances alone are therefore not sufficient to ‘correct’ 
for this effect.

We propose that this particular effect is better under-
stood as a distance-dependent connectome blurring: 
biologically strong connections are ‘spread out’ in the 
reconstruction to edges corresponding to spatially ad-
jacent nodes, with the extent of that blurring being a 
function of the pathway length. The way in which fibre 
orientation uncertainty/dispersion is modelled and uti-
lised in the tractography algorithm is likely to influence 
the magnitude of this effect. While there exists a tailored 
correction mechanism for addressing this specific issue 
in the context of targeted tracking when quantifying a 
probability of connectivity (99), to our knowledge there 
has been no such mechanism proposed for addressing 
this issue when quantifying the density of white matter 
connections.

We further clarify that there is another streamlines 
tractography effect that bears similarity to that de-
scribed above, but behaves slightly differently and 
applies to both deterministic and probabilistic stream-
lines algorithms. Opportunities for the streamlines al-
gorithm to sample from an inappropriate fibre orien-
tation (particularly in the presence of crossing fibres), 
and therefore construct a wholly erroneous trajectory, 
increase as a function of bundle length. This effect has 
also to our knowledge not been investigated compre-
hensively but should be considered as distinct from 
both other ‘influences of bundle length on streamline 
count’ described above.

Relationship to fixel-based analysis metrics

We have recently published on the disentanglement of 
statistical effects in microscopic FD and macroscopic 
changes in cross-sectional area, made possible within the 
FBA framework (69). Due to the subsequent interest we 
received in the potential incorporation of such fixel-wise 
measures into tractogram and/or structural connectome 
quantification, here we clarify the relationship between 
these fixel-wise measures and FBC.

For any particular white matter pathway in the brain, 
FBC quantified using a global or semi-global tractog-
raphy approach will scale directly proportionally with 
both the microscopic FD (resulting in a greater number 
of streamlines or increased streamlines weights travers-
ing any particular fixel) and the macroscopic pathway 
cross-sectional area (resulting in a greater breadth of fix-
els traversed by the streamlines within that pathway, and 
hence likely also more streamlines being assigned to that 
pathway), as shown in Figure 13. FBC quantified in this 
manner therefore behaves most comparably to the ‘fibre 
density and bundle cross-section (FDC)’ measure (69); 
but crucially, FBC is quantified as an endpoint-to-end-
point connectivity measure, whereas FDC is a local fix-
el-wise quantitative measure (as shown in Figure 3).



 : 2022, Volume 2 - 20 - CC By 4.0: © Smith et al.

O R I G I N A L   R E S E A R C H   A R T I C L E

global image information into otherwise locally greedy, 
streamlines-based tractography data. When used ap-
propriately, these methods address one of the major 
fundamental technical limitations in the field that oth-
erwise precludes the direct comparison of quantitative 
estimates of white matter connection density between 
subjects. We hope that the explanations and clarifica-
tions contained herein assist those readers for whom 
the purpose (or indeed existence) of these approaches 
was unclear.
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Software implementations

The algorithms described in the section ‘The algorithmic 
basis of quantitative streamlines tractography’ have been 
made available as part of the MRtrix3 software package 
(100) (www.mrtrix.org; command and option names as at 
version 3.0.0):

• Algorithm 1, ‘Fixel mask’: afdconnectivity;
• Algorithm 2, ‘Weighted fixel mask’: afdconnectivity 

using the -wbft option;
• Algorithm 3, ‘Volume-averaged streamline weights’: 

tcksift2 using the -linear option;
• Algorithm 4, ‘Optimised streamline weights’: tcksift2.

The SIFT method (19) mentioned in the ‘Relationship 
to existing methods’ section is additionally available as 
command tcksift.

CONCLUSION

We have shown how the algorithmic design of a 
class of ‘semi-global’ tractogram optimisation algo-
rithms is the inevitable result of trying to incorporate 

Fig. 14. Visual demonstration of the operation of hypothetical alternative Algorithms 5a and 5b. (a) For the pathway of interest (left panel; streamlines), derive a 
mask of fixels traversed (top panel; red fixels within yellow voxels). Within this mask, compute from the fibre densities of those fixels (encoded visually as fixel lengths) 
the mean (equation at right shows the sum of fixel fibre densities divided by the number of traversed fixels), as a measure of ‘connectivity’ C of the pathway. (b) For 
each individual streamline within the pathway of interest (left panel), derive a mask of fixels traversed by that streamline (bottom panel; red fixels). Across those fixels, 
compute the mean fibre density (first equation at right shows the sum of traversed fixel fibre densities divided by the number of fixels traversed by that streamline). 
Finally, take the mean of these values across the streamlines corresponding to the pathway of interest (second equation at right shows sum of streamline weights 
divided by the number of streamlines) as a measure of ‘connectivity’ C of the pathway.

http://www.mrtrix.org/
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Appendix

Algorithm 1: ‘Fixel mask’

define pathway.fixels = empty_set
define pathway.volume = 0.0
for s in pathway.streamlines:
  for f in s.fixels_traversed:
    if f not in pathway.fixels:
      pathway.fixels += f
      pathway.volume += f.volume
    end if
  end for
end for
define pathway.sum_lengths = 0.0
for s in pathway.streamlines:
  pathway.sum_lengths += s.length
end for
define pathway.mean_length = pathway.sum_lengths / pathway.number_of_streamlines
define pathway.connectivity = pathway.volume / pathway.mean_length

Algorithm 2: ‘Weighted fixel mask’

for s in tractogram.streamlines:
  for f in s.fixels_traversed:
    f.tractogram_density += s.length_within_fixel[f]
    if s in pathway.streamlines:
      f.pathway_density += s.length_within_fixel[f]
  end for
end for
define pathway.volume = 0.0
for f in fixels:
  pathway.volume += (f.volume * f.pathway_density / f.tractogram_density)
end for
define pathway.sum_lengths = 0.0
for s in pathway.streamlines:
  pathway.sum_lengths += s.length
end for
define pathway.mean_length = pathway.sum_lengths / pathway.number_of_streamlines
define pathway.connectivity = pathway.volume / pathway.mean_length

Algorithm 3: ‘Volume-averaged streamlines weights’

for s in tractogram.streamlines:
  for f in fixels_traversed_by_s:
    f.tractogram_density += s.length_within_fixel[f]
  end for
end for
define pathway.connectivity = 0.0
for s in pathway.streamlines:
  define s.volume = 0.0
  for f in fixels_traversed_by_s:
    s.volume += (f.volume * s.length_within_fixel[f] / f.tractogram_density)
  end for
  define s.crosssection = s.volume / s.length
  pathway.connectivity += s.crosssection
end for
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Algorithm 4: ‘Optimized streamlines weights’

define error = sum (f.density - f.tractogram_density)^2 for all fixels “f”
for i in iterations:
  for s in tractogram.streamlines:
    optimize s.crosssection to minimise error
  end for
end for
define pathway.connectivity = 0.0
for s in pathway.streamlines:
  add s.crosssection to pathway.connectivity
end for


